If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2+14m-1=0
a = 3; b = 14; c = -1;
Δ = b2-4ac
Δ = 142-4·3·(-1)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4\sqrt{13}}{2*3}=\frac{-14-4\sqrt{13}}{6} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4\sqrt{13}}{2*3}=\frac{-14+4\sqrt{13}}{6} $
| 0,2x=7,2x+14 | | 0,2x=7,2x+14 | | 2/3x-1=14 | | 80x+280=100x+200 | | -3y+-5y=1 | | -3y+-5y=1 | | ^(2x+1)-4*3^(x+2)-81=0 | | x3-12x2+36x+-48=0 | | (5a-2)+(7a-5)=7-(14-11a) | | 55y-1=17y | | 16x2-4x-6=0 | | ??x5=16 | | 2.9087x+4.556(0.8870-x)=1.913 | | 15x6=6x5x | | 6(x+5)=9 | | 12x6=6x3x | | 12x6=6x3x | | 12x6=6x3x | | 12x6=6x3x | | 12x6=6x3x | | 12x6=6x3x | | 12x6=6x3x | | 12x6=6x3x | | 12x6=6x3x | | 12x6=6x3x | | 12x6=6x3x | | 4×t6×=30 | | 69-x=29 | | 5-x/5=20/7 | | 5-x/5=20/7 | | 25x³-4x=0 | | X2+14x+100=0 |